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Background

● Most languages have insufficient 
resources for model training

● A handful of languages (especially 
English) are dominating NLP field
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Cross-Lingual Transfer Learning

● Leverage knowledge from other languages

● From higher resource language
○ E.g. English, German

● Multilingual transformer models
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Cross-Lingual Transfer Learning

● Few-shot learning
○ Only a handful of transfer target language samples

● Zero-shot learning
○ Does not require any labeled data in the transfer 

target language for training
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Cross-Lingual Transfer Learning

Model training with language 
different from target
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Research goal
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Examine the influence of language relatedness 
on transfer learning in machine translation

Analyze impact of data volume on transfer 
learning in a machine translation task



Previous research

● Using large amounts of data from high-resource languages 
improves performance on low-resource languages [1] [2]

● The size of the used source corpus can be more important 
than the relatedness of the source and target languages [3]

● Transferring from multiple languages increases performance 
[4]
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Previous research

● Transferring between more similar languages could yield 
higher scores [5] [6]

● Language similarity correlates with cross-lingual transfer 
efficacy [7]
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Method

● mBART

● OPUS-100

● Polish to English translation task 
○ Different transfer languages, different shot levels

● Evaluation: BLEU, METEOR
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mBART

● Multilingual sequence-to-sequence model Based on BERT

● Developed by Facebook AI Research (FAIR)

● Achieved state-of-the-art performance on various machine 
translation benchmarks
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Multilingual 
Transformer 

Model

https://publicdomainvectors.org/ https://www.telusinternational.com/articles/artificial-intelligence-ai-will-affect-customer-service
…



Dataset

● OPUS-100
○ English-centric parallel corpus
○ Common benchmark dataset for multilingual machine translation

● Transfer source:
○ Czech-English (100k samples)
○ Russian-English (100k samples)
○ German-English (100k samples)

● Transfer target and evaluation: Polish-English
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Transfer learning configurations

● Vanilla mBART

● “High-resource” parent models:
○ Czech-English (100k samples)
○ Russian-English (100k samples)
○ Slavic-English (200k samples, Czech + Russian)
○ German-English (100k samples)

● Each model fine-tuned with 0, 10, 100, 1k and 10k of 
Polish-English data
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Transfer learning configurations

mBART
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Fine tune Parent 
model

Fine tune Fine tuned
model

Evaluate
(BLEU, 
METEOR)



Evaluation

● BLEU
○ Common metric 

● METEOR
○ More advanced, shown to correlate well with human 

judgments
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Results  
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Translation 
source: 
Polish 0 shot 10 shot 100 shot 1k shot 10k shot

Transfer 
source: BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

N/A -- -- 0.45 0.05 0.01 0.01 10.43 0.33 15.42 0.36

Czech 11.61 0.35 14.3 0.41 13.41 0.37 14.35 0.42 17.17 0.41

Russian 0.42 0.11 3.16 0.26 4.86 0.31 16.44 0.41 19.42 0.44

Slavic 8.33 0.27 11.94 0.36 10.87 0.35 16.44 0.41 18.18 0.43

German 0.12 0.05 0.56 0.07 3.72 0.29 16.82 0.42 19.35 0.44



Results  

● Despite including the same Czech data and additional 
Russian data, the Slavic model shows performs worse than 
the Czech model
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Results  

● The performance of both Russian and German are also rising 
and catching up to Czech and Slavic
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Results  

● Equal performance between transfer languages from 1k shot
● Using only Polish without any transfer learning starts to produce 

comparable results from 10k shot
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Results  

● Zero-shot with Czech outperforms 1k Polish
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Effect of data volume

● Increasing the amount of transfer target language data 
(Polish) improves performance

● Surprisingly, increasing the amount of transfer source 
language data did not increase the performance. 
○ The slavic model has 2x more data but performs worse than just 

Czech
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Effect of language similarity

● Importance of similarity in zero- and few-shot settings
→ Low-resource scenarios

● Seems to diminish as the amount of transfer target 
language data increases

○ 1k, 10k samples: performance almost equal across languages

● Comparably high zero-shot results when the transfer 
source language is of high similarity (Czech) with 
Translation source language (Polish)
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Impact

● Transfer learning can provide a temporary solution to the 
lack of data to enable service

● Can be enhanced with the use of similar languages
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Conclusions

● Additional transfer data does not necessarily result in higher 
performance

● Importance of language similarity in low resource 
scenarios
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Limitations

● Only Polish-English task

● Limited amount of languages for transfer learning

● Use of only a single corpus
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Future Research　　

● Using other language pairs

● Confirmation with other datasets and NLP tasks

● Use of multiple transfer languages
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Thank you for listening
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